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Abstract—Recent works have shown that the white-space
spectrum opened to cognitive radio devices is far less than what
the lobbyists claimed. With fast growing number of secondary
users, carefully scheduling the spectrum allocation in cognitive
radio networks operating on white space becomes vital. However,
the frequent ON/OFF activity of primary users (PU) and the
mobility of the cognitive users make the problem of spectrum
scheduling extremely hard.

By modeling the PUs activity in an opportunistic manner,
this paper studies how to schedule the spectrum assignment for
mobile cognitive radio devices. With the mobility information, we
formally define the related problem as the Maximum Throughput
Channel Scheduling problem (MTCS) which seeks a channel
assignment schedule for each cognitive radio device such that
the maximum expected throughput can be achieved. We present
a general scheduling framework for solving the MTCS. Based on
the proposed framework, we then present two polynomial time
optimal algorithms to solve the MTCS in the homogeneous and
the heterogeneous traffic load cases, respectively. Our algorithms
are evaluated by simulations using the mobility trace obtained
from a real world public transportation system. On average,the
proposed algorithms outperform a greedy algorithm by21.6%.
Index Terms— Cognitive radio networks, white-space, mobility,
spectrum hand-off, scheduling, channel assignment.

I. I NTRODUCTION

Communication spectrum is known as one of the most
precious and scarce resources for wireless communications.
On November, 2008, the FCC released rules opening the
digital television bands to the operation of cognitive radio
devices. On one hand, the ruling gives opportunistic access
of the licensed band to unlicensed users; on the other hand,
the FCC also extended protection to adjacent channels and
require a no-talk radius larger than the Grade-B protected
contour [4]. Recently, studies have shown that the actual
amount of available white space is much less than what the
lobbyists claimed [2]. With limited spectrum resource and the
fast growing number of secondary users, spectrum scheduling
in cognitive radio networks operating on white space becomes
vital.

Spectrum scheduling in cognitive radio networks involves
the secondary users to reserve one portion of the spectrum
for certain periods of time [17]. An important factor affecting
the spectrum scheduling in cognitive radio networks is the
ON/OFF activities of the primary users (PU) [6] [7]. Whenever
a PU is detected, the cognitive radio devices have to evacuate
from the licensed band possessed by the PU, and transmission
link failure could occur. A transmission link failure can be

avoided by changing the transmission frequency, i.e., using
a different channel. For example, during a period in which
a channel on 120MHz is occupied by PUs, another channel
on 500MHz can be selected for communications if it is not
used by any other PU. However, the frequent ON/OFF activity
of the PUs and the mobility of the cognitive users make the
problem of selecting an available communication channel on
the fly very challenging.

Fortunately, in the white space, the PUs are commonly
TV towers whose positions, interference range and operation
hours can be profiled [9]. This enables us to model the PUs
activity in an opportunistic manner. In this paper, we formally
define the Maximum Throughput Channel Scheduling problem
(MTCS) which aims at seeking a long-term channel assign-
ment schedule to maximum the expected network throughput.
The major contribution of this paper is summarized as follows:
1) We present a general scheduling framework to solve the
MTCS; Based on the framework, two polynomial time optimal
algorithms are proposed to tackle the homogeneous and the
heterogeneous traffic load cases, respectively;
2) The proposed algorithms are evaluated by simulations based
on the bus traces in a real public transportation system. Sim-
ulation results show that the proposed scheduling algorithms
achieve high network throughput and outperform an intuitive
greedy algorithm.

The rest of this paper is organized as follows. We discuss
related work in Section II. The system model and problem
definition are described in Section III. The proposed schedul-
ing framework and algorithms are presented in Section IV.
We present simulation results in Section V and conclude the
paper in Section VI.

II. RELATED WORK

Recent studies reveal that the lobbyists overestimate the
white space availability [2]. For example, only 5 channels
in Berkeley, CA are actually available for white space use
when the FCC’s white space rules are applied, while the
FCC website indicates 23 available channels. It is also shown
that the average available bandwidth is less than half of the
previous estimations [8]. With the fast growing number of
secondary users, carefully scheduling the spectrum allocation
in cognitive radio networks operating on white space becomes
vital.
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Spectrum allocation (channel assignment) and scheduling
are very important and challenging problems in cognitive
radio networks [3]. In [19], Zhenget al. developed a graph-
theoretic model to characterize spectrum access. Based on
the model, they designed several centralized heuristics to
find fair spectrum allocation. Distributed spectrum allocation
methods were presented in [14], [16], [18]. In [18], the
authors presented optimal and suboptimal distributed spectrum
access strategies under a framework of partially observable
Markov decision process. In [16], the authors proposed the
Dynamic Open Spectrum Sharing (DOSS) MAC protocol,
which provides real-time dynamic spectrum allocation and
high spectrum utilization.

In this work, we study a mobile cognitive radio network
operating on white space where the spectrum resource is not
as abundant as that in the previous works. In order to avoid
the high overhead caused by real-time spectrum allocation,
we design a long-term spectrum scheduling framework to
achieve maximum expected network throughput. Therefore,
our solution is different from those studied in the related
works.

III. PROBLEM DEFINITION

In this section, we will describe the system model and
formally define the optimization problem.

We consider a secondary wireless network consisting of a
Base Station (BS) andn mobile stations (MS), each of which
has a single cognitive radio. According to the IEEE 802.22
standard, the radios usually have long transmission ranges.
For example, the4W EIPR radio has a cell radius of17km
which is basically long enough to cover a town such as Davis,
Berkeley and Palo Alto in the State of California, which are
27.1km2, 45.9km2 and61.3km2, respectively. We assume all
the radios work at the fixed transmission power and have the
same transmission ranger. Therefore, all the MS’s can directly
communicate with the BS. In such a network, there will be
n MS-BS links and every MS/link needs to be assigned a
different channel at any instant of time to prevent co-channel
interference.

The secondary users share a region with a group of PUs.
Both the PUs and the secondary users are aware of their own
location through GPS or triangulation techniques [10].

The available spectrum is divided intoM non-overlapping
channels which are indexed by the integers from0 to M − 1.
Any proposed spectrum sensing scheme can be used to detect
the locally available channels [3]. We assume the existenceof
a common control channel on a relatively low frequency which
can support a long transmission range. Both the location and
the sensing information is broadcast by the cognitive radio
users through the common control channel periodically. The
OFDMA technology is used for media access. Therefore, all
MS’s are able to communicate with the BS simultaneously
if they are assigned different sub-carriers. We assume each
mobile station and PU can occupy only one channel at a certain
period.

Each MS is assumed to know its own trajectory in the
next certain period, sayq · t seconds, e.g buses and metros
have to follow specific routes and schedules. For everyt

seconds, the BS will calculate the probability of the existence
of PUs by using the activity profile of the PUs.q is a constant
which identifies the length of total time period considered
for scheduling. The PU’s activity is modeled as a two-stage
ON-OFF process. The activity profile of PUi is defined as
Pi = {(0, t, p0i ), (t, 2t, p

1
i ), ..., ((j − 1)t, jt, pj−1

i ), (jt, (j +
1)t, pji ), ..., ((q− 1)t, qt, pq−1

i )}, which specifies the probabil-
ity p

j
i that the PUi is active in each time interval(jt, (j+1)t)

(0 ≤ j ≤ q − 1).
If the PUs are off, the secondary users can operate on the

licensed band possessed by the PUs. When the PUs become
active in any channel, all the secondary users should evacuate
from those channels and switch to other available channels.
In the case of limited available licensed bandwidth, some
secondary users may fail to detect any available channel and
have to stop their transmission until available channels emerge.
In this paper, we assume there is always traffic demand on
each MS. Therefore, whenever an MS stops transmission, its
throughput is degraded.

In this paper, we study the problem of scheduling the chan-
nel assignments to maximize the expected network throughput.
The expected network throughput is defined as the summation
of the expected throughput on each link between the BS and
MS. The maximum expected network throughput is the up
bound of the average value of the network throughput over a
long term such as multiple days or several weeks. The problem
is formally defined as follows:

Definition 1 (MTCS):Given a cognitive radio network with
one BS,n MS, M channels,N PUs, the MS moving trajec-
tories and the PUs’ activity profilesP = {P0, · · · , PN−1},
the Maximum Throughput Channel Scheduling problem
(MTCS) seeks a feasible channel assignment scheduleSi for
each MSi in the time period(0, q · t), such that the expected
network throughput is maximized.

The channel assignment scheduleSi for each MS i is
denoted as a sequence of three-tuples{T1, · · · , Tk, · · · }. Each
three-tupleTk = (ts, te, channelj) represents assigning chan-
nel j to MS i in the time period(ts, te). The unit of time is
second throughout this paper.

IV. PROPOSEDSCHEDULING ALGORITHMS

In this section, we present a framework to solve the MTCS.
First we will discuss the homogeneous traffic load case in
which maximizing the expected network throughput is equiv-
alent to maximizing the expected total available transmission
time (ATT) of all MS’s. The details of the homogeneous
traffic load case is presented in the subsections IV-A and IV-B.
The proposed framework is formally presented in the subsec-
tion IV-C. An example has also been presented to demonstrate
the process of the proposed framework. The heterogeneous
traffic load case is discussed in IV-D.
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A. Create Base Time Interval

Our approach to solve the homogeneous traffic load case
consists of two steps. In the first step, we introduce a method
to divide the whole time periodq · t into a set of non-
overlapped time intervals such that the channel assignment
in each time internal is independent. In the second step, an
optimal algorithm is proposed to assign channels to each MS
in each non-overlapped time interval.

To assist computation, we introduce atime-channel avail-
ability model which is derived from the activity profiles of
the primary users and the trajectories of the MS’s. The model
is presented as a two dimensional coordinate. The x-axis is
time. The MS’s are placed on the y-axis. Each point in the
first quadrant is corresponding to an instant at which a certain
MS moves in or leaves at least one PU’s interference range.
Since the activities of the PUs will also affect the spectrum
availability of the MS’s, the whole scheduling periodq · t is
divided into a group of time slots each of which is equal tot

seconds. An example of the time-channel availability modelis
shown in Fig. 1. In Fig. 1(a), MS0 is moving from the left side
of the figure to the right, while MS1 is traversing from right
to left. The MS’s are moving into or leaving the interference
range of the PUs. For example, MS0 enters PU1’s interference
range at time instantt1 and leaves att4. The corresponding
time-channel availability model is shown in Fig. 1(b).

On the time-channel availability model, we define a term
base time interval (BTI) in which the probability of the
BS or any MS being interfered by any PU does not change.
For example, in the BTI(0, t1), the probability of each PU
showing up will keep constant. By projecting the points
and the time slots to the horizontal axis, the whole time
period (0, qt) is divided into a set of base time intervals
B = {(0, t1), (t1, t2), · · · , (t(j−1), tj), · · · , (t(x−1), qt)}.

Since each BTI is independent with each other, the channel
assignment in each BTI will not affect the assignment in other
BTIs. Let ATTk be the expected available transmission time
in the BTI k. Now we are going to prove the following lemma.

Lemma 1:Assuming the time period(0, qt) is divided into
x BTIs, the available transmission time over the whole network
in the time period(0, qt) is maximized iff the available
transmission time is maximized in each time base interval.
maxATTall =

∑x

k=1 maxATTk.
Proof: Because each BTI is independent,ATTall =∑x

k=1 ATTk. It is trivial to prove the “if” case that maxi-
mizing each ATT will maximize the summation of the ATTs.
We prove the “only if” case by contradiction. Assume at least
one of theATTs, say ATTi, is not maximized when the
summation of theATTs is maximized. We can always in-
crease thatATTi to achieve a larger summation of theATTs,
which contradicts the assumption. Therefore, if

∑x

k=1 ATTk

is maximized, eachATTk is also maximized. So the Lemma
is proved.

B. Channel Assignment In Each BTI

Using the activity profile setP , the probabilitypkij at which
each MSi will be able to use each channelj in each BTIk

BS

Link BS-MS0 Link 
BS-M

S1

MS 0
MS 1

t1

t4

Interference Range

PU1 PU2

t6
t9

t8

t5 t4

t2

(a) MS trajectory. The letters in the small circles are the time the MS’s
arrive at that point

MS0

MS1

qt time

t t t

0 t1 t2 t3 t4 t5 t6 t7 t8 t9

(b) Time-channel availability model

Fig. 1. MS trajectory to Time-channel availability model.

can be pre-calculated. We say an MS can communicate with
the BS if neither the BS nor the MS is affected by any PU.
For example, suppose there are three PUs will be turned on
in the channelj and interfere with the BS (or the MSi) with
probability 0.5, 0.2 and 0.3, respectively. The probability of
the MS i being able to communicate with the BS in channel
j is (1 − 0.5)(1 − 0.2)(1 − 0.3) = 0.28. The probabilities in
each BTI can be denoted as a matrix. Each row of the matrix
is corresponding to a MS while each column is corresponding
to a channel. Each number at theith row jth column is
corresponding to the probabilitypkij . An example of3 MS
and3 channels is shown in Table. I.

To achieve a maximum ATT in each BTIk, the MS’s are not
necessary to switch channels in the whole BTI. The proof is
trivial. Let us first consider any given time instant. If thisis an
optimal assignment at the instant, the total probability should
be the highest. According to the construction of the BTIs, the
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TABLE I
MS VS. CHANNEL IN ONE BTI

CH0 CH1 CH2

MS0 0.5 0.9 1.0

MS1 0.5 1.0 1.0

MS2 0.5 0.9 1.0

activity profile of the primary users do not change in each BTI.
In other words, each instant is equivalent to each other in the
BTI k. Therefore we can always use the same assignment in
the whole BTI k to achieve a maximum ATT. Since there
may not always be enough number of available channels,
only one part of the MS’s can be assigned a channel in each
BTI. Moreover, co-channel interference is not allowed in the
system. In other words, at any instant each two MS’s can not
be assigned the same channel. Thus the problem is equivalent
to find a maximum weight matching between channels and
MS’s, where the weight of an assignment of MSi to channel
j is the probabilitypkij .

To solve the matching problem, we use the bipartite graph
model. For each BTIk, a bipartite graph is created with two
columns of vertices. Each vertexu on the left corresponds to
a MS i. Each vertexv on the right corresponds to a channel
j. Each vertex on the left is connected with each vertex on
the right by an edge with weightpkij . An example of the
constructed bipartite graph is shown in Fig. 2. There are a
number of algorithms which can be used to optimally solve
the maximum weight matching problem in bipartite graphs
in literature. The maximum weight matching problem can
be solved by using a modified shortest path search in the
augmenting path algorithm. In our simulation, the modified
Bellman-Ford algorithm with running timeO((n + M)3) is
used [13].

C. Scheduling Framework

The proposed scheduling framework is formally presented
as Algorithm 1.

Algorithm 1 Optimal Scheduling Framework
Step 1 Construct the time-channel availability model;
Step 2 Divided the whole time periodqt to a setB of BTIs;
Step 3foreach elementBTIk of B

Calculate the probabilitypkij of each channelj being
available for each MSi;

Construct the bipartite graphGk;
if Gk is not a complete bipartite graph;

Make Gk a complete bipartite by inserting edges with
weight 0;

endif
Compute a maximum weight matchingMWMk of Gk;
Get the corresponding assignmentASSk of MWMk;

endforeach
Step 4foreach MS;

Combine its corresponding assignment in each BTI and
output;
endforeach

In Step 1 and 2, this algorithm simply construct time-
channel availability model for each MS and compute the BTIs.
Assume the number of the joints of each MSi′s trajectory
and the inference range boundaries of all PUs is a constant
Ci. Let Cmax = max{Ci|∀i ∈ {1, · · · , n}}. The Step 1
and 2 takeO(nM(q + nCmax)). The maximum number of
BTIs is q + nCmax. Step3 is to construct a bipartite graph
and compute maximum weight matching for each BTI. The
maximum weight matching algorithm takesO((n+M)3) [13].
So Step 3 takesO((n +M)3(q + nCmax)). In Step 4, each
MS combines their assignment together to make a full channel
assignment schedule. The running time of Step 4 isO(n). The
total running time of Alg. 1 isO((n +M)3(q + nCmax)).

Next, we use an example to demonstrate how the proposed
approach works. In this example, we consider 3 MS’s, 2
PUs(PU) and 3 channels. The scheduling duration is90
seconds. Assume the BS is not in any PUs interference
range. PU0 uses channel 0 and PU1 operates in channel 1.
Assume the activity profile of PU0 in the next90 seconds
is P0 = (0s, 30s, 0.4), (30s, 60s, 0.5), (60s, 90s, 0.7).
The activity profile of PU1 is P1 =
(0s, 30s, 0.6), (30s, 60s, 0.1), (60s, 90s, 0.8). MS0 is in
PU0’s interference range in the time periods (0s, 15s) and
(45s,75s) and in PU1’s interference range in the time period
(30s, 60s). MS1 is in PU0’s interference range in the time
periods (45s, 75s) and in PU1’s interference range in the
time periods (30s, 45s) and (75s, 90s). MS2 is in PU0’s
interference range in time periods (15s, 60s) and in PU1’s
interference range in time period (30s, 60s).

According to the MS’s trajectories and the PUs’ ac-
tivity profiles, we can get the set of BTIsB =
{(0s, 15s), (15s, 30s), (30s, 45s), (45s, 60s), (60s, 75s), (75s,
90s)}. We pick the BTI (45s, 60s) as an example to compute a
channel assignment schedule. The constructed bipartite graph
is shown in Fig. 2. One of the maximum weight matching
of this graph is consist of 3 edges (MS0, CH2), (MS1,
CH1) and (MS2, CH0) with a total weight2.5. Then in this
BTI, channels 2, 1 and 0 should be assigned to MS’s 0, 1
and 2, respectively, in order to get the maximum expected
ATT = 2.5× 15s = 37.5s.

MS1

MS2

MS3

CH1

CH2

CH3

0.5

0.9

1

0.5

1

1
0.
5

0.9

1

Fig. 2. A bipartite graph with 3 MS’s and 3 Channels (CH). The numbers
are the weight of the edges.
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D. Heterogenous Traffic Load Case

In the heterogenous traffic load case, each MSi is assumed
to generate traffic at a constant ratefi over the scheduling
during q · t. Once a MS can not find any available channel
to communicate with the BS, it has wait and stop generating
traffic. Thus the heterogeneous traffic load case is very similar
to the homogeneous traffic load case. The only difference is
each MS has different traffic demand. Then based on the
framework proposed in Section. IV-C, we use a modified
version of the algorithm proposed in Section. IV-B to assign
the channels to each MS.

First notice the scheduling durationq · t can also be
divided into a set of BTIs by the same method introduced
in Section. IV-A, because the assignment in each BTI will not
affect the performance of the assignment in other BTIs. In
each BTIk, the probabilitypkij at which each MSi will be
able to use each channelj is also calculated.

Then we construct the bipartite graphs and solve the max-
imum weight matching problem following the framework
presented in subsection IV-C. The only difference is the weight
assigned to each edge on the bipartite graphs is equal to
the expected throughput on that link if a certain channel is
assigned to the link. Assume the time duration of a BTIk is
Lk, the expected throughput ispkij × fi×Lk. The final step is
to combine each channel assignment in all BTIs for each MS
to create its own channel assignment schedule. The running
time of the algorithm is alsoO((n+M)3(q + nCmax)).

V. NUMERICAL RESULTS

We evaluate the performance of the proposed algorithms
and compare them with the theoretical expected value and a
greedy algorithm. The greedy algorithm always tries to assign
each MS the channel with the highest available probability in
each BTI.

We used a real bus system UNITRANS as the simulation
model. UNITRANS is a public bus service system opened in
1972 serving the city of Davis, California with 14 different
routes. Each bus of the UNITRANS system is equipped with
a GPS which is tracked by the terminal monitor [11]. The map
of the UNITRANS system is shown in Fig. 3. The rectangle
blocks with an arrowhead inside are the real-time locationsof
the buses. The BS is placed at the Silo Bus Terminal of latitude
38.539345◦, longitude−121.753077◦. The PUs are randomly
placed on a square region of80km× 80km centering at the
Silo Bus Terminal. The MS’s follow the real bus schedule.

The other important simulation settings are the transmission
ranger = 17km, the interference rangeR = 34km [12]. The
profiles of the PUs activity are built by settingt = 30. The
schedule duringq · t is set to4500 seconds.

Intuitively, the following parameters play a key role in the
system performance: the number of MS’sn, the number of
PUs N , the number of channelsM and the traffic load.
We conducted our performance evaluation by setting those
parameters to different values in different scenarios. In the
homogeneous traffic load case, since maximizing the expected
network throughput is equivalent to maximizing the expected

Fig. 3. UNITRANS Bus Routes

total available transmission time (ATT), the summation of
the ATT of all MS’s was used as a performance metric. In
the heterogeneous traffic load case, each MS generates traffic
with a random data rate between 1Mbps and 10Mbps. The
network throughput is used as the evaluation metric in the
heterogeneous traffic load case. In Fig. 4(a) and Fig. 5(a),
n = 30,M = 40 andN was changed from10 to 50 with a
step size of10. In Fig. 4(b) and Fig. 5(b),N = 30,M = 40
andn is increased from10 to 50. In Fig. 4(c) and Fig. 5(c),
N = 30, n = 30 andM was increased from20 to 60. The
corresponding results are presented in Fig. 4 and Fig. 5. Each
point on the figures is the average value of10 simulation runs.

We can make the following observations from these results:
1) In terms of the total available transmission time and
the network throughput, the average difference between the
proposed MTCS Framework and the numerical expectation
are 2.7% and 3.6%, respectively. Since the results obtained
from the MTCS framework is an average value of only 10
simulation runs, it is reasonable to have some shift from
the theoretical value. On average, the proposed framework
outperforms the greedy algorithm by14.7% in the aspect of
ATT and 21.6% in the aspect of network throughput.
2) From the Fig. 4(a) and Fig. 5(a), we can see that the total
ATT and the network throughput decreases if the number of
PUs increases. When additional PUs are introduced to the
network, the BS and the secondary users are more likely to
be affected and have less opportunity to get access to the
licensed spectrum. Thus the throughput in the cognitive radio
network is reduced.
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Fig. 4. Simulation and Theoretical Results: UNITRANS System, Homogeneous Traffic Load.

10 20 30 40 50
0

1

2

3

4

5

6

7

The Number of Primary Users

T
he

 N
et

w
or

k 
T

hr
ou

gh
pu

t (
´ 

10
5  M

b)

 

 

Numerical Expectation
MTCS Framework
Greedy

(a) n=30, M=40

10 20 30 40 50
0

1

2

3

4

5

6

7

The Number of MSs

T
he

 N
et

w
or

k 
T

hr
ou

gh
pu

t (
´ 

10
5  M

b)

 

 

Numerical Expectation
MTCS Framework
Greedy

(b) N=30, M=40

20 30 40 50 60
0

1

2

3

4

5

6

7

The Number of Channels

T
he

 N
et

w
or

k 
T

hr
ou

gh
pu

t (
´ 

10
5  M

b)

 

 

Numerical Expectation
MTCS Framework
Greedy

(c) n=30, N=30

Fig. 5. Simulation and Theoretical Results: UNITRANS System, Heterogeneous Traffic Load.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we formally define the Maximum Throughput
Channel Scheduling problem (MTCS) and proposed a general
scheduling framework to solve the MTCS. Based on the
proposed framework, two optimal algorithms are developed
to solve the MTCS problem in the homogeneous and the
heterogeneous traffic load cases respectively. Simulationre-
sults show that the performance of the proposed algorithms
is close to the optimal value. The aim of this paper is to
maximize the network throughput. Actually there are multiple
other important metrics to evaluate the network performance.
In the future, we will study the fairness and the delay issues
in the spectrum scheduling problem.
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