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Abstract—The exponential growth of Internet-of-Things (IoT)
devices not only brings convenience but also poses numerous
challenging safety and security issues. IoT devices are distributed,
highly heterogeneous, and more importantly, directly interact
with the physical environment. In IoT systems, the bugs in device
firmware, the defects in network protocols, and the design flaws
in system configurations all may lead to catastrophic accidents,
causing severe threats to people’s lives and properties. The
challenge gets even more escalated as the possible attacks may
be chained together in a long sequence across multiple layers,
rendering the current vulnerability analysis inapplicable. In this
paper, we present FORESEE , a cross-layer formal framework to
comprehensively unveil the vulnerabilities in IoT systems. FORE-
SEE generates a novel attack graph that depicts all of the essential
components in IoT, from low-level physical surroundings to high-
level decision-making processes. The corresponding graph-based
analysis then enables FORESEE to precisely capture potential
attack paths. An optimization algorithm is further introduced
to reduce the computational complexity of our analysis. The
illustrative case studies show that our multilayer modeling can
capture threats ignored by the previous approaches.

I. INTRODUCTION

With the rapid development of IoT technologies, billions of
IoT devices are deployed in the world. Various communication
protocols, applications, and platforms are designed for diverse
application scenarios. Popular IoT platforms, such as Samsung
SmartThings, Apple HomeKit, etc., attract more and more
developers to design numerous applications to automate our
lives. For example, there are more than 5,000 active developers
and 75 million Applets since the launch of IFTTT platform [1].
According to a report from the McKinsey Global Institute, it is
estimated that the IoT could have an annual economic impact
of $3.9 trillion to $11.1 trillion by 2025 [2].

Despite numerous benefits that IoT provides us, it has also
brought tremendous challenges to safety and security analysis.
The heterogeneity of IoT, such as diverse applications and
protocols, makes it challenging to design a general solution
to resolve all the safety and security issues. Most existing
research only tackles the security issues of one single compo-
nent in IoT. For example, [3] investigates the Mirai botnet of
IoT devices, which is caused by the defects of communication
protocols. [4, 5] focus on the security and privacy of the
applications. HoMonit [6] discovers the anomaly behaviors of
applications via analyzing the corresponding wireless traffic,

which only considers communication and application compo-
nents. Because these works focus on the security issues of
one or two components, they cannot discover other potential
threats in other components of the IoT system. For instance,
the physical environment and users’ behaviors, chained by IoT
devices and applications, may also pose unknown threats to
IoT systems. The heterogeneity and interdependent compo-
nents of IoT require a more complicated detection framework
that considers all the components simultaneously.

To solve these challenges, we propose a cross-layer vul-
nerability analysis framework named FORESEE to detect the
vulnerabilities in the IoT system. Unlike existing work that
generally focuses on certain malicious activities at a single
component, we target all the IoT components which can trigger
security and privacy problems. We first decouple and model
the IoT components in a layered structure, which consists
of physical environment layer, device layer, communication
layer and application layer. The layered structure not only
includes more components of the system but also considers
the interaction between them. Furthermore, we show how
to decompose real-world attacks and integrate them into the
multilayer graph, which enables us to analyze how they
propagate and undermine system security.

The benefits of our approach are threefold. First of all, by
considering all of the core components simultaneously, we can
discover more vulnerabilities than the existing frameworks.
For example, suppose the user is watching TV at home, and
then leaves home without turning off the TV. If the show on
TV plays human voice “open the door”, the voice assistant
may sense the command and issue a door-open command. This
example shows that user’s behavior can affect system security
and thus should be included in the analysis framework. Sec-
ond, we thoroughly analyze how different exploits cooperate
and breach the system. For instance, if an air conditioner is
plugged into a smart outlet and the outlet has weak default
credential, then the attacker can remotely log into the outlet
and disable the air conditioner, even triggering other potential
actions such as opening the window, which may cause severe
security issues. Frameworks focusing solely on software ap-
plications cannot discover such vulnerabilities because they
involve physical dependence between devices and brute-force
login at the communication layer. Lastly, we can examine how



seemingly relatively unimportant vulnerabilities can escalate
and cause disastrous results due to the interconnected nature
of IoT devices. This helps us better evaluate the vulnerabilities’
impact on system security and prioritize the fixing of them.

Based on the idea of multiple layers, we model system
states at these layers and formalize the mapping between states
at adjacent layers, resulting in a multilayer state transition
graph. Moreover, we explore all the existing and potential
attacks and incorporate these attacks into the graph to form
a final hypothesis graph. Then we apply model checking
technique to detect various vulnerabilities and attacks. With
the rapid increase of the devices and applications, the number
of nodes (which correspond to system states) explodes, leading
to massive computation cost. Therefore, we design a state
compression algorithm to intelligently generate independent
sub-graphs for vulnerability detection.

In summary, we make the following contributions:
• We formally define IoT systems using a hierarchical

model, which precisely reflects the flows of the data and
the interplay of each component.

• We design a risk assessment framework for IoT to capture
potential attack paths across multiple layers.

• We propose an optimization algorithm to reduce the state
explosion problem by constructing the hypothesis graph
based only on the components relevant to the correctness
property specified.

• We investigate the effectiveness of our model by applying
it to a realistic example scenario.

• We evaluate the time and space complexity of our frame-
work using the Spin model checker, and the result shows
that it only takes seconds and around 100 MB memory
to verify hypothesis graph with millions of nodes when
there is a violation of the specified correctness property.

We first give a system overview in Section II. Section III
presents the formal definition of IoT systems as multilayer
state transition graphs. Section IV describes the threat model
and problem scope. In Section V, we formalize how to
construct the IoT hypothesis graph by combining attacks
and the multilayer state transition graph. Section V-C gives
a case study of a smart home IoT system and the corre-
sponding hypothesis graph where attacks at different layers
are highlighted. Section VII presents our implementation and
scalability analysis. Section VIII reviews the related work.

II. SYSTEM OVERVIEW

Figure 1 depicts the structure of the framework. First, gather
all the components about the target IoT system, including
all the physical features (Env), user states and behaviors
(Usr), devices installed (Dev), communication events (Com),
and software applications installed (App), and construct the
multilayer IoT system transition graph. Then decompose real-
world IoT attacks into atomic attacks [7]. From the atomic
attacks and the multilayer system transition graph, we build
the hypothesis graph and perform vulnerability detection with
respect to the specified correctness properties. Finally, if there
is a violation of the specified property, an error trace is
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returned to help us identify the cause. In Section V, we present
a state compression algorithm that selects applications and
user states relevant to the given correctness property. With the
help of this approach, we can collect the relevant components
and atomic attacks and directly generate the subgraph of the
hypothesis graph for verification.

Before constructing the IoT hypothesis graph, we should
determine the input of the framework, which are the compo-
nents with gray box in Figure 1. For a given IoT system, App
and Dev are already known. Then, we can determine Com
and Env based on App and Dev, since the communication
events subscribed or issued by the apps and the mapping
between devices and physical features are known. The Attacks
are derived from the vulnerabilities, which are determined by
searching the Common Vulnerabilities and Exposures (CVE)
[8] entries for each device and protocol of the system. Once we
know the vulnerabilities, we can establish the set of potential
attacks on the IoT system. Correctness properties are system-
specific. Soteria [9] proposed dozens of properties specific to
smart home applications and five general properties such as
no conflicting control commands or repeated commands in
one code branch, etc. However, to the best of our knowledge,
currently there is no work that automatically generates cor-
rectness properties or selects user states and behaviors.

III. MULTILAYER STATE TRANSITION GRAPH

The heterogeneous nature of the IoT system raises the
necessity of a new analysis approach, which not only com-
prehensively inspects the existing complicated components,
but also can be easily extended to expose the vulnerabilities
of new devices being plugged, along with the corresponding
security and safety impact on the entire IoT system. However,
unlike traditional platforms that only involve machines and
limited types of user input, an IoT system directly responds
to physical environment changes, and can potentially interact
with an infinite variety of individual behavior. To capture the
extra complexity introduced by additional problem dimensions
from IoT, we propose a novel formal framework that abstracts
a complicated IoT system into a clear, layered structure. Our



hierarchy-based approach effectively decouples the processing
logic of one layer from another so that the vulnerabilities
within one layer would not be mixed with others, and makes
a complex analysis tractable. Figure 2 illustrates the overview
of our IoT hierarchy, which consists of four layers — physical
environment layer, device layer, communication layer, and
application layer.

We abstract the internal behavior of each layer as a directed,
unweighted state transition graph L = (V,E). In the graph,
the node v ∈ V represents a certain system state of the entire
layer. A set of atomic propositions (AP) and their values
constitute distinct system states. Each atomic proposition is
a boolean variable and describes the smallest unit of the
system state that has the characteristic properties of an IoT
element. By representing a system state at one layer using
a collection of atomic propositions, we make our multilayer
state transition graph amenable to model checking algorithms.
Sensor measurements of continuous values are discretized into
boolean values and represented by atomic propositions as well.
For instance, an AP at the device layer describes the value
of one temperature sensor. The value of AP is True if the
temperature exceeds the threshold 80◦F; otherwise, the value
is False. We can use the set v = {bAP1

, ..., bAPi
, ..., bAPK

} to
represent the nodes at a certain layer, where K is the number
of APs in a certain layer. The value of bAPi

is either True
or False. For a layer that has K atomic propositions, there
will be 2K nodes at that layer, representing 2K system states.
Then one edge e ∈ E describes system state transition. The
formal definition of multilayer graph is as follows:

Definition. (Multilayer IoT System Transition Graph) A
multilayer IoT system transition graph is a tuple

G = (L(1), . . . , L(4),M),

where L(i) = (V (i), E(i)), i = 1, . . . , 4, denotes the system
state transition sub-graph at physical environment, device,
communication or application layer. M is the set of cross-layer
edges which indicate the relationships between the adjacent
layers and is formally defined as:

M =
⋃

i∈{1,2,3}

(M (i,i+1) ∪M (i+1,i)),

where M (i,j) is the set of edges from layer i to layer j.

In the rest of this section, we give detailed definitions of
system transition for each layer, along with the node mappings
(i.e., cross-layer edges).

Physical environment layer describes the objective fact of
physical surroundings and the user states in the IoT system,
such as room temperature, humidity, the user being asleep,
etc. Here we put the user states in this layer because they also
describe the objective fact. The node v ∈ V (1) represents one
specific state of the environment. The edges between nodes
denote the system state transition, which may be caused by
environmental change or the user’s state change.

Suppose vi and vj are two nodes at physical environment
layer. One atomic proposition APl at this layer describes the

environmental temperature. If the temperature is larger than
threshold θ, the value of bAPl

is True, otherwise it is False.
If the value of APl in node vi is different from the one in node
vj while all of the other atomic propositions are of the same
value, then there are two edges of opposite direction between
vi and vj , implying environmental temperature change.

Let us re-consider the “user and TV” example men-
tioned in the Introduction section. That the user leaves
home without turning off the TV can be represented as an
edge between a physical environment-layer node contain-
ing env.user.watch TV and a device-layer node vs, where
dev.TV.on, dev.presence.false and dev.door.closed hold
true. Furthermore, the “open the door” voice from TV causes
the system state transition from vs (through communication
layer and application layer) to another device-layer node vt
where dev.TV.on, dev.presence.false and dev.door.open
hold true. In vt, dev.presence.false and dev.door.open in-
dicate a violation which can be detected by our framework.

Device layer focuses on IoT device status, which is de-
termined by the variable values in the embedded OS of the
device. The set of atomic propositions at this layer describes
the measurements of environment features and actuator con-
figurations. Some devices can sense the environment, such as
the pressure sensor, while the other devices can be configured
and operated directly by the user or controlled remotely by
software applications, such as an air conditioner or a light bulb.
The node v ∈ V (2) conveys the status of all IoT devices, in
terms of atomic propositions and their values. Suppose an IoT
device can detect the window state “open or closed”, and the
value of corresponding atomic proposition APk reflects the
window state. If two nodes vi and vj have distinct True and
False values of atomic proposition APk, and the other atomic
propositions in the two nodes have the same value, then there
is an edge to connect these two nodes, indicating a window
state change event, such as “opening the window” or “closing
the window”. If the IoT system functions normally, every edge
at application layer corresponds to an edge at device layer,
because application commands are delivered to the devices and
devices’ configuration change are transmitted to the decision
maker. The additional edges at device layer indicate some
device is compromised, and thus the device status is no longer
reported to the decision maker.

There exist cross-layer edges between physical environment
layer and device layer, which reflect the route of state trans-
mission. For instance, an edge from physical environment
layer to device layer reflects how devices perceive the ground-
truth physical state. The nodes vi ∈ V (1) and vj ∈ V (2)

in the two layers have edges if and only if for each atomic
proposition APi ∈ vi, all of the associated atomic propositions
in vj have the same value as APi. There may be multiple
edges connected to one node at physical environment layer,
because one environment feature can be measured by multiple
devices. For example, humidity can be measured by both
thermostat and water leakage sensor. It should be pointed
out that environment measurement by IoT devices is not
necessarily equal to ground truth at physical environment



layer, as devices could be malfunctioning or compromised.
Communication layer models the events transmitted be-

tween devices and the decision makers. Since we consider
the most common case in which decision makers reside in
the remote cloud which is proprietary and closed-source, we
do not model the communication between different decision
makers. The events can be categorized into data transmitted
from sensors to decision makers, and commands from decision
makers to executive devices. The set of the atomic propositions
in this layer indicates these events.

The change of information to be transmitted due to sensor
measurement is represented as edges in this layer. Suppose
vi is a node where an atomic proposition humidity ≥ 80%
holds true, and vj is a node where the atomic proposition
humidity < 80% holds true. Then the edge between vi and vj
represents the communication event of information change to
be sent by the humidity sensor, due to the humidity decrease.

An upgoing edge from device layer to communication layer
indicates that a sensor detects an environmental change and
delivers the information to decision makers via transmitting
data packets, while a downgoing edge from communication
layer to device layer implies a command is delivered to an
actuator, causing its configuration change. Due to communica-
tion protocol defects or attacks, the communication event may
be tampered, thus generating additional edges which lead to
some system states that violate the correctness properties.

Application layer formalizes the state of decision makers,
which is determined by the set of variable values of software
proxies running on the decision making infrastructure. These
software proxies act as conduits for physical devices. Hence,
the set of atomic propositions in this layer characterizes
decision maker’s knowledge about the IoT system.

Every node in this layer denotes one particular deci-
sion maker state, and an edge represents decision maker
state transition due to application rules, or environmental
change and actuator configuration change reflected in decision
maker’s states. Consider room temperature increase causes
window open as an example. Suppose the atomic proposition
app.win.closed holds true in vi, while app.win.open hold
true in vj . In particular, app.temp > 80◦F holds true in both
vi and vj . Then the edge between the two nodes stands for the
application rule to open the window when room temperature
is higher than 80◦F.

The edge from communication to application layer signifies
that the event packets sent by the sensor are faithfully delivered
to the decision maker, triggering the update of variable value
in decision maker. Similarly, an edge from application layer to
communication layer indicates that the decision maker’ state
is updated due to the application rules, and it also generates
command packets to be sent to the actuator(s).

Only verifying that a system does not satisfy the property
is not sufficient; we should also visit back to identify the
root causes of attacks. In our framework, the interconnection
among the layers is explicitly captured by their node mappings,
which helps trace the influences from one layer to another and
finally identify the propagation path a venerability.

Table I
TYPICAL IOT ATTACKS HAPPENING AT DIFFERENT LAYERS

Attack Env Dev Com App
Mirai [3] X X
IoTMON [10] X X
Sniffing attack [6] [11] X
Rocking drones [12] X X
Soundcomber [13] X X
Vampire attack [14] X X

IV. THREAT MODEL

In this paper, we consider IoT system vulnerabilities (in-
tegrity violations) caused by flawed or malicious apps, user’s
behaviors, attacks, or their interactions via common channels
such as physical environment features or shared devices. Due
to the distributed and heterogeneous nature of the IoT systems,
such violations are difficult to predict. To analyze the attacks’
impact on system security, we first need to integrate them into
the system transition graph. While some real-world attacks to
IoT systems happen at only one layer, many others involve
multiple steps at different layers. We follow [7] and name
every single step an atomic attack. Table I surveys typical
attacks and layers at which they operate.

Furthermore, we consider both passive attacks and active
attacks that happen at all of the four layers of the IoT system.
It is assumed that the attacker is aware of the commercial
IoT system architecture. Besides, he knows the communication
between the gateway and the cloud; he also knows the proto-
cols used for inter-device communication as they are industry
standards. The attacker’s arsenal is all the vulnerabilities listed
on Common Vulnerabilities and Exposures (CVE) of all the
devices installed and protocols used. We assume that the
remote cloud is trustworthy and do not attempt to model
attacks on the cloud.

V. HYPOTHESIS GRAPH

Due to the interactive nature of IoT components, attacks
may trigger unexpected security issues. Thus, it is neces-
sary to model the attacker’s behavior and integrate it into
the IoT system model to construct a novel, more realistic
state transition graph amenable to existing formal verification
tools. We name our multilayer IoT state transition graph with
attacker behaviors as hypothesis graph. The formal definition
of hypothesis graph is given below.

Definition. (IoT Hypothesis Graph) An IoT hypothesis
graph is a multilayer graph G = (L(1), L(2), L(3), L(4),M),
where L(l) = (V (l), E(l)), l ∈ {1, 2, 3, 4} is state transition
graph at layer l and M is the node mapping. Each node
v ∈ V (1) ∪ · · · ∪ V (4) denotes the system and the attacker’s
state. Each edge e ∈ E(1) ∪ · · · ∪ E(4) ∪M denotes environ-
mental change, user’s behavior, information flow, or attacker’s
behavior.

Compared with the multilayer IoT system transition graph,
the hypothesis graph contains extra atomic propositions for
attacker’s states, which can appear at all of the layers except
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Figure 3. The illustration of Mirai cross-layer attack

the environment layer, and additional edges for attacker’s
behaviors, which are across the device and communication
layer, across communication and application layer, or within
the device layer or physical environment layer.

A. Modeling Attacker Behavior

As is shown in section IV, a real, complete attack may
involve multiple atomic attacks. So from now on, when
talking about attacks, we mean atomic attacks. To model
passive attacks (which do not change system configuration),
we introduce atomic propositions associated with devices’
or events’ visibility to the attacker. To model active attacks
(which change the system configuration), we introduce atomic
propositions associated with the services running on a device
and attacker’s privilege on a device. We assume an attacker
may have one of the three privileges on a device: none, user,
and root. To model attacks via the network, we add atomic
propositions to represent malware or other packets generated
by the attacker such as username-password pair.

Here we use Mirai attack as an example and show how to
decompose it into atomic attacks and represent each atomic
attack. In Mirai attack, the device’s infection mechanism can
be decomposed into the following four steps — scanning
the potential victim, brute-force login, malware dispatch, and
malware execution. The first three steps happen at the com-
munication layer, while the last one is at the device layer.
Assuming the victim device is dt, Figure 3 illustrates the cross-
layer attack. Node vi1∼vi5 are device-layer nodes representing
system and attacker’s states before or after the atomic attack.
vj1∼vj3 are communication-layer nodes representing probing
packets, credential, or malware image, respectively. For clarity,
we only list AP s that are relevant to the Mirai attack. The
values of all the other AP s in vi1∼vi5 are the same.

Device scanning: In this step, the attacker sends TCP SYN
probes to pseudorandom IPv4 addresses on Telnet TCP ports.
If the device dt responds, then the attacker knows the existence
of dt, i.e., the device becomes visible to the attacker. This
is reflected as the AP value change from dev.dt.vis.false
to dev.dt.vis.true. The atomic attack is represented as two
added edges (vi1 , vj1) and (vj1 , vi2).

Brute-force login: The attacker attempts to log in to the
device by trying 10 different credentials. A successful login
give the attacker user privilege, which is reflected as AP value

change in vi2 and vi3 . The attack behavior is also represented
as two added edges (vi2 , vj2) and (vj2 , vi3).

Malware dispatch: After logging in to the victim device,
the attacker checks the system environment, including OS
version and CPU architecture, etc., and then download the
malware binary image. Similar to the previous two steps, we
use two AP s to represent the system state before and after
the attack. More specifically, dev.dt.ready.false holds true
in vi3 (meaning the device is not ready for the launch of the
malware image), while dev.dt.ready.true holds true in vi4 .
Edge (vi3 , vj3) and (vj3 , vi4) model this atomic attack.

Malware execution: This step is the loading and execution
of malware binary image. The AP dev.dt.mal.true in vi5
indicates the malware process is running. The atomic attack is
represented as the edge (vi4 , vi5). Once executed, the malware
performs a sequence of sabotage such as obfuscating its
process name, killing other processes, or privilege escalation,
etc. All these malicious behaviors are represented as additional
edges that follow node vi5 .

Many real-world IoT attacks can be decomposed as atomic
attacks mentioned above. Our added atomic propositions make
sure the correct sequence of atomic attacks which should be
followed by the attacker. For example, the attacker should first
sniff the existence of a device; only then can he launch the
remote-to-user attack. To formally define an atomic attack, we
need to identify the system and attacker states before and after
the attack. Then the attack behavior is represented as the added
edge between these two nodes.

B. Constructing Hypothesis Graph

As is shown in Section V-A, for some attack, we need
to introduce new atomic propositions (e.g., dev.dt.vis.false
and dev.dt.prv.none, etc.) to represent the attack. In this
subsection, we define a basic operation named state expansion
to show how to accommodate the newly inserted atomic propo-
sitions. After that, we can represent all the attack behavior as
added edges and construct the final hypothesis graph.

State expansion. Suppose we are trying to insert an atomic
proposition ap to a certain layer and the original graph of this
layer has |V | nodes and |E| edges. After state expansion, the
new graph for this layer has

∣∣V ′∣∣ nodes and
∣∣E′∣∣ edges. If ap

is independent of all the existing atomic propositions, then we
have

∣∣V ′∣∣ = 2 ×|V | and
∣∣E′∣∣ = 2 ×|E|. Formally, when we

try to insert an atomic proposition ap to layer l, first duplicate
the original graph of layer l (The cross-layer edges are also
duplicated.), then make all of the nodes of one copy have ap
being True, while the other copy have ap being False.

After state expansion for all of the attacks which require
additional atomic propositions, we can safely add edges to
represent attack behaviors. The resulting graph is an IoT
hypothesis graph whose nodes depicts system states including
the attacker’s state at certain layer and whose edges represent
state transition due to environmental change, user’s behavior,
information flow, or attacker’s behavior.



Algorithm 1: Dynamic Selection Algorithm

Input: SApp = {App(1) . . . , App(n)}: the set of all the
apps installed and the virtual apps representing
user states and behaviors.
p: the correctness property specified.

Output: S ⊆ SApp: the set of all the apps that should be
considered together for the specified correctness
property.

1 Algorithm dynamic_selection(SApp, p)
2 Construct the virtual app App(0) by determining the

set Ein, Eout, Ain, and Aout from the given
correctness property p.

3 S = {App(0)}
/* Iteratively add related apps to

S. */
4 old size = |S|
5 do
6 T = SApp\S
7 for x ∈ T do
8 for y ∈ S do
9 if is_related(x, y) then

10 S = S ∪ {x}
11 end
12 end
13 end
14 new size = |S|
15 while new size 6= old size
16 S = S\{App(0)}
17 return S
1 Procedure is_related(x, y)

/* Determine if app x and y are
related. */

2 return x[Ein] ∩ y[Eout] 6= ∅ or
x[Eout] ∩ y[Ein] 6= ∅ or x[Eout] ∩ y[Eout] 6= ∅ or
x[Ain] ∩ y[Aout] 6= ∅ or x[Aout] ∩ y[Ain] 6= ∅or
x[Aout] ∩ y[Aout] 6= ∅

C. Vulnerability Detection

Our framework is built on model checking, which takes
system graph and correctness properties as input, and outputs
a counterexample if the system does not satisfy a certain
correctness property.

Specifying correctness property. Correctness properties
for a system can be classified as safety property (that some-
thing “bad” will never happen) and liveness property (that
something “good” will eventually happen). Here we express
correctness properties using Linear Temporal Logic (LTL)
syntax [15].

Below are some examples of LTL formula and their mean-
ings (We follow the convention and omit the leading A in each
LTL formula):

• G(dev.user.state.u0 → dev.alexa.off) means the voice
assistant should be off if the user is not at home.

Hacked heater: start heating App logic: open window

Sniffing 
Sniffing 

Remote login

Figure 4. Example of smart home attack

• G¬(dev.user.state.u2∧dev.door.open) means it should
never happen when the user is sleeping and the door is
open.

• G(camera.prv.none) means the attacker should never
gain access to the surveillance camera.

Model checking. Though there are many model checking
algorithms, their inputs all originate from Kripke structure
[15]. Our multilayer hypothesis graph conforms to the defi-
nition of Kripke structure, and thus is applicable to existing
model checkers. Specifically, the model checking algorithms
based on automata theory first transform the Kripke structure
into a finite automaton, then transform the negation of the
correctness properties into a Büchi automaton. After that, they
compute the intersection of the above two automata and return
a counterexample if the intersection is not empty.

D. State Space Compression

A major challenge of model checking is the state explosion
problem. Though introducing user and attack can make the
system model more realistic, the number of nodes of the
model gets 2k (k is the number of newly introduced atomic
propositions to represent user and attacker’s states) times
bigger, thus worsening the state explosion problem. Therefore,
we propose a dynamic selection algorithm that selects relevant
applications and user states, given the correctness property.
Because the algorithm is executed before constructing the
hypothesis graph, it can be used regardless of the model
checking algorithm chosen.

Our algorithm is based on the observation that every correct-
ness property or IoT application involves environment features
and/or actuator configurations. Moreover, each user state and
associated behavior can also be seen as a virtual application.
Hence, formally any given application i can be represented as

App(i) = (E
(i)
in , A

(i)
in , E

(i)
out, A

(i)
out),

where E(i)
in is the set of input environment features (including

user states), A(i)
in is the set of input actuator configuration, and

E
(i)
out and A(i)

out are the output counterparts. For a virtual app
of user state and behaviors, Ein is the set of the current user
state, Ain = ∅, Eout is the set of all of the possible next state
from current state, and Aout is the set of all the possible next
actuator configuration due to user’s behavior in current user
state. Then we can determine whether any two given apps
are related or not using the following rule: If one’s output
environment feature/actuator configuration is used by the other
as input, or if the two apps have common output environment
feature/actuator configuration, then they are related.
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Figure 5. The hypothesis graph with attack trace

The algorithm is shown in Algorithm 1. Given the pool of
applications and user data, along with the specified correctness
property, the algorithm starts from environment features and
actuator configurations used by the property as seeds, then
iteratively marks applications (including virtual apps) until
the set of marked apps does not change. The subroutine
is_related(x, y) determines whether app x and y are
related. In Line 3, it puts App(0) as the seed. After we put
all the related apps into S, we can remove App(0) (Line 16).

VI. CASE STUDY

In this section, we present a proof-of-concept attack inspired
by [3, 10, 6] and the corresponding IoT hypothesis graph.
The attacks cross device, communication, and application
layer. The attacker’s goal is to break into a smart house.
The smart house is equipped with a heater and an automatic
window. Among the software applications installed, there is
one particular app — If the temperature is greater than the
threshold, then turn on the heater. The IoT setting and the
attacker are illustrated in Figure 4. The safety properties is
expressed in LTL syntax as

G(dev.window.open→ ¬dev.user.state.u0).

Figure 5 shows the corresponding hypothesis graph for the
scenario. For clarity, we only label each node with atomic
propositions whose value get changed from the preceding

node. The final red node denotes the violation of the property,
i.e., the attacker’s goal is achieved, and the label for each edge
shows the cause of the state transition. Notice that there could
be multiple paths connecting the same starting and ending
node and here we are only showing one path for illustration.

The atomic proposition in the bottom left initial state tells
us that the room temperature is less than the threshold. The
increase of room temperature is sensed by the temperature
sensor, and the sensor generates a wireless event (represented
by the communication layer node with the atomic proposition
c temp>80). This wireless event is sniffed by the attacker,
whose sniffing behavior is denoted as edge 1 . The decision
maker receives the event and updates the variable values in the
software proxy. The App logic controls the window to open
by sending the window open command (denoted by the node
labeled with c win open) to the window. This control signal
is also sniffed by the attacker (labeled by 2 ), and thus cause
the atomic proposition temp evnt snf and open win cmd snf
to hold true. Edge 3 ∼ 7 represent the brute-force login,
malware dispatch, and malware execution, as explained in
Section V-A. Edge 8 ∼ 14 denote the attacker’s exploitation
of the system’s vulnerability to force the window open.

The model checking algorithm first determines that the node
with a thick red border is a state which violates the specified
correctness property. Then it traces back and marks all the
preceding nodes until it reaches the initial node. Since from



0 1 2 3 4 5 6

App set ID

10
2

10
3

10
4

10
5

10
6

10
7

#
 s

ta
te

s 1.54% 1.07% 0.758%

0.0921% 0.0886% 0.0572%

Before state space compression

After state space compression

Figure 6. Number of states be-
fore and after compression and
the compression ratio.

0 0.25 0.5 0.75 1 1.25

# states 10
6

0

20

40

60

80

100

T
im

e
 (

s)

0 0.25 0.5 0.75 1 1.25

# states 10
6

0

5

10

15

M
e
m

o
r
y

 (
M

B
)

10
3

0 0.4 0.8 1.2 1.6 2 2.4

# states 10
3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

T
im

e
 (

s)

0 0.5 1 1.5 2 2.5

# states 10
3

136

138

140

142

144

146

148

150

152

154

M
e
m

o
r
y

 (
M

B
)

(a) (b) (c) (d)

Figure 7. Impact of hypothesis graph size (measured by number of states) on verification time and memory usage. 7 (a) and
7 (b) show the scenarios where the models pass the verifier; 7 (c) and 7 (d) show the scenarios where there are violations
to the property.

the initial system state we can finally reach the violating state,
the hypothesis graph does not satisfy the specified correctness
property, and the error trace is the red path in Figure 5.

VII. EVALUATION

A. Implementation

We implement FORESEE based on the Spin model checker
[16]. Spin takes a system modeling language called Promela
(Process Meta Language) [16] as its input language, and
accepts correctness properties specified as Linear Temporal
Logic (LTL) formulas. We use IoTSan to convert SmartApps to
Promela language, then modify the Promela code by inserting
variables for physical environment, device, and communica-
tion layer, as well as atomic attacks. After that, we perform
verification by running the compiled program. If the system
does not satisfy the given correctness property, the verifier will
return an execution trace that caused the violation.

B. Performance Analysis

For a given LTL property, we test the scalability of our
framework under two different settings: 1) when our system
passes the verifier; 2) when there is a violation of the property.
The time and space complexity of hypothesis graphs that pass
the verifier are shown in Figure 7(a) and 7(b), while the
ones of the hypothesis graph that fail to pass are shown in
Figure 7(c) and 7(d). The x-axis variable “# states” denotes
the number of unique states of the hypothesis graph traversed
by Spin model checker. This is used as a measure of the
size of the hypothesis graph. The y-axis variable “Memory
(MB)” in Figure 7 denotes the sum of memory used to store
all these states, hash table, depth-first search stack, and other
overhead. Due to the server’s memory limit, the maximum
number of states we can run is around 1.4× 106. Since Spin
will immediately return after detecting a violation (i.e., an
acceptance cycle), the verification process takes much less
time and space if there is a violation. The scalability of our
framework when there exists a violation is shown in Figure
7. From the figures, we can see that the time and space cost
scale linearly with the graph size, and it takes much less time
and memory when there is a violation of the property.

VIII. RELATED WORK

The research works on IoT security and privacy can be
categorized by the components they focus on.

Device Layer. Costin et al. [17] conducted a static analysis
of 32 thousand embedded firmware images and discovered
38 previously unknown vulnerabilities of embedded devices.
Son et al. [12] presented real-world attacks to drones by em-
ploying the resonant frequencies of Micro-Electro-Mechanical
Systems gyroscopes. Ronen et al. [18] described an attack on
Philips Hue smart lamps by exploiting a major bug in their
implementation of the ZigBee protocol.

Communication Layer. Gu et al. [19] proposed a defense
framework against device spoofing attacks by fingerprinting
and authenticating IoT devices using features generated from
Bluetooth low energy protocol stack. Jia et al. [20] presented
a graph-based mechanism to detect vulnerabilities in IoT
communications by rating and sorting the correlated subgraphs
extracted from the directed graph generated from the traffic
data. Li et al. [21] investigated the side-channel information
leakage of video surveillance cameras through streaming traf-
fic data analysis.

Application Layer. Ding et al. [10] presented a framework
that discovers potential physical interactions across applica-
tions using natural language processing (NLP) techniques
and evaluated the risk score of each inter-app interaction
chain. Mohsin et al. [22] proposed a formal framework for
IoT security analysis based on satisfiability modulo theories
(SMT). [9, 23] took advantage of model checking to analyze
application-level vulnerabilities in IoT systems. Mohsin et al.
[24] presented a probabilistic model checking based frame-
work to analyze the risks quantitatively.

IX. CONCLUSION

In this paper, we design and prototype FORESEE , a cross-
layer vulnerability analysis framework for IoT systems. We
propose a formal approach to construct the IoT hypothesis
graph which includes all of the core components of IoT
systems, including user states and behavior that are largely
ignored in existing works, and the potential attacks. The
framework detects vulnerabilities and threats caused by any
interaction between those components. Besides, a dynamic
state space compression algorithm is presented. Our evalua-
tion suggests that the framework scales well on hypothesis
graphs consisting of millions of nodes. And the compression
algorithm is able to reduce the number of states by three orders
of magnitude.
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